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ln this article we revisit the G allagcr  and wm Voorhis  optimal solucc  coding  scheme
- for g(xmmtrically  distriblltd  non-negat ive  ixlt(:gm alphabets tand show th;Lt, the variolls

s~dxodes  in the popular Rice dgorithrn  cm lx: derived from the Gdlqyx  tLnd VaII Voorhk

(;ode. Next, wc modify and gpwralize  t, 11(: GtLlli~g~r an(i Viln  Voorhis  (:o(ic for ~-Si(iCd  gc!-
om(%ridly  distril>llt(-xi  int(?ger  iLll)~lil~)(!tS (positive an(i negative), which m: tfyl)i(d  inplltj
s~urlpk?s to the }mck-(em(l  entropy coding  st,a~(: of 1OSS1(!SS  pr(:(lictive co(ling s(JJ(mL(Js  il~l(l 10SS,Y
triulsform coding schemes. BMCX1  (m this c;xI(: wc propos(! an adaptive c(xii~lg  s(;h(m(: with
low ix~l]Jlc?lxlc?rlt:~t,i(Jrl  c(mphxit,y  and pr’(:s(!]lt (+Xl)(~riIIl(lIltiLl  rcsdts  OH compresshg  pliLIl(%ary

im+ys using the proposed mcthd.
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Adaptive Source Coding Schemes for Geometrically
Distributed Integer Alphabets

EXTENDED ABSTRACT

I. Introduction

Predictive coding  schemes predict the present sample vduc  based  on the previous

samples. The error samples, which arc the differcmce between the predictd and  actual
values, are either sent direct ly to an entropy coder  in the case of Iossless compression, or
are quantized before they are sent to m entropy coder in the case of lossy compression.
‘Transform coding  clecorrdates  the original signal and this dccorrelat,ion  generally results
in the signal energy being redistrihut)cd  iurlong  a smaller set of trausform  codficicnts.
The transform coefficients are quantized befor(! they arc sent to au entropy coder. It
is well-known that, the error sampk:s  aId tk transform coc;fficic!nts  before  qumtization
call bc rnodelled  with a Laplaciall  distril>~lt,ion [1, 2]. III [3] td [4], we intro(il~c(!d  tin
improved modified Lapkwian  distribution for the uuquantizcd  o{~tpllts  and wc showd
that the probability distribution of the quantized outpl~t integers derived  from the modified
Laplacian  distribution is geometric for all integers except zcxo. This discrepancy can b(:
shown to be small and  the quantized olltfput,  integers can be nmddld using a sirnpk!
single-parameter discrete 2-sided geometric probability distriblltion.

In  %ction  11 we rcwisit,  the Gdlagm-van  Vijor~lis-H\lfflll:~ll  (GVH)  ol)tilrd  solwc(:
co(iing scheme for g(lO1rl(-ltfriciLll,y  distril  )1 lt(x{ ~loll-11(.:giltivt:  integer ill~)lliL])(!t,  S [~] \V~l(:r(!

])(;  ,(i) == (1 – 0)(); v # >0, (1)

whcr(: f? = 1 – r[O),  r(~) is tlw fraction of zeros ill the s~unp]c set , Wld  i is {t n(m-n(!gatjivc

integer. r(0) can he Mirnatd  directly from th(: image  dat t~. W(! S h O W  h %X:thIl  111 thiLt

the  vario~w sIdxxx{cs  h the poplhr  R,i(:c  dgorit,hm  can h(! d(:rk(:(l from tht! G V H  (:0(1(:.
In fact, th(; Rice! SIIl)COdCS  arc also it sl~l)sct  of tlm (jlitss  of optillld  (:o(Ics for rlmleq@
(!ll(:()(lillgs  proposal I>y Golornh [6]. In S(!(:tion IV w(: Ino(lify  iHI(l g(!ll(:raliz(:  the GVH c()(I(:
for 2-sideci  geometrically (Iistjril>lltled  int(:g(:r dl)hiLlx%s (positive il,Il(l ucgat,ivc), which lMV(:
t,ht:  followin~  (Iistril)lltlion. .
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II. Background on GVH Codes

Gallager  and Van Voorhis  presented an optimal binary prefix  code for the set of
geometrically distributed nonnegative integers [5]. Here we call this code the Gallager-
van Voorhis-Huffman-l (GVH1)  code. This code is a generalization of Golomb’s  optimal

1 — 1/2 [5]. Let 1 be the integercodes for rmdength  encodings for the special case when O —

where 6’ = 1 – r(0) as defined in (l). It is easy to see that for any 6, 0 < 0 < 1, there
is a urliq~Lc  positive integer 1 satifying  (3). Let a non-negative number i bc: represented
by i = lj -t r where j = [i/lj, the integer part of i/1, a&l r = [i] mod 1. Gallager  and
Vam Voorhis  derived the optimal 1 (hence the optimal Huffman  code) as a function of O
to minimize the code redundancy. They also showed that, an optimal code for thf! non-
negative integers is the concatenation of a unary  code which is used to encode j, and a
Huffma~l  code which is used to encode  r, O s r s 1 – 1.

13ach integer  r, 0 s 7S <1 – 1, rqxwsents an t!quivalenco  class modLdo  1. Gallager  ~and
Vail Voorhis  showed that the integer set {r : () < r ~ 1 – 1 } has a distjril)llt)ion  pr = &$fl”,
and  the sum of the two least likely letters exceeds the probability of the most likely. The
length of the optimal codewords can differ by at most one. It can be shown that, the optimal
coding for this integer set is to use codewords of length llog2 lj for i < 2 llc’~z ~’ lJ – 1, and
codewords of length [log2 1] + 1, otherwise!.

In [3, 4] wc proposed a simple construction to generate a HuffmaII code for the intxgcr
set {r :0 ~ r s 1 – 1}. The constrlwt,ion  algoritJ~ln  is as follows:

1. G(!Il(Y;Lt(?  the prdimimry  list ~ of” ~l’”g~  ‘~ ])imry S(XIII(HI(’(:S  {(lo. ..0, ..., 11 . . . 1}, (!it(!]l

of which hM l(!xlgth  llog~  1].

2. App(w(i to (!idl o f  t h e  hM ~ – 2 l[”x~ ~J \Jimuy s(:~lll(mccs in IJ (!it,h(!r iL () {m iL 1 to

gcnerat,c two binary scqlwnccs  of length  [logz t] + 1, ami call the m?w list L’.

L’ lliis i~ list of 1 ]Jr[+fix-(:(lll( iiti(~rl(!(i  codewords, wit]l 2 ll”x~ ~-[ ‘J - / (mic!words  of kV1/@

[10K2 /], id thC  H%t Of  k!rlgth lk)g2 /] + 1. L’ hi iLll ()]>tir&Ll  HllfflniLH cod(! f O r  {~” : () <—
r ~ 1 – 1 }. TIIIH, each l-si(i~(i  gt;(jl~l[:t,ri(;zL1]<y dist,riblltwi  int,(!gcr’  can he efficiently  (!nco(kxi
llSiIlg a COnCFLt(211iLt,  iOIl  Of iL llIliLr,y (K)(l[> iLIl(l iL HllffIKli~Il  (:od(!. “For the particndar  cas(! whtnl
1 = 2L’, it is Xlot h;mi  to S(!C that  it~l illt(!pyr i (m(:o(k!d  by th(! GVH1 c o d e  c o n s i s t s  of it
(! OIl(!iLt(+lltLt, ion” of iL llIliLr~ (x)d(:  of l(!ll~tll  [~] + 1 ( [*J ()’S folloW(!(]” ~)~ iL 1) iLll(~ iL

k-tltpk! (L’ (:onsists of’2L k-tllpk:s)j  wh(m: tl is th(! k:ngth  of iL syIrllN)l ill bits ((:.g., t,yl)i(:ally
7/ = 8 hl iIIliLg(!  triLIlsHlission).  This p?wti(:ldar  (!()(k: (;O1lstl:ll(:tiO1l”  WiLS dso (i(!s(:rilw(i in [6].
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III. Relationship Between the l-sided GVH Code and the Rice Code

Rice developed a predictive 10SS1MS coding scheme [7] that consists of two separate
stages: the front-end pre-processor is a predictor followed by a symbol mapper, while
the second part performs adaptive entropy coding. The first stage takes the difference
between the actual values and the predicted values and maps the differences, positive or
rmgative, to a secluence  of non-negative integer numbers. The second stage  encodes the
sec~lmnce  by adaptively selecting the best of several easily implemented variable length
coding algorithms for non-negative integers, The software Rice code was used in the
interplanetary Voyager Mission, and the hardware Rice implementation has been basclined
for the Cassini  Mission (schedulcxl  for launch  in t hc late 1990’s timeframe). Recently a new
VLSI implementation of the 10 SS1CSS Rice algorithm was reported [8]. The c!llc;~Jfier/decocl(:r
chip set supported 4 to 14 bit,s/sampIc.  It was reported that under laboratory conditions,
th! encoder chip compresses at a rate in excess of .50 hkzmqlkw/s,  and the decoder operates
at 25 Msamples/s. A second Rice encoder lMS bum desiglied  as a gate array wnd is being
fdn-icated  in a 1.2 IIM RAD-hard  CMOS process.

Using Rice’s notation in [7], it was shown in [9] that the variom variable length cofh:s
that consists of the fundamental sequence (FS) code T 1 aIld the split-sample
are optimal Huffman  codes for data sources that have Laplacian  distributions.
negative integer i,

W,,k(i)  =
11’1 ([”+” ) * LsBk(i)

wh(m:

VI(?)]) = 000 .  . . 0 0 1  , (4)

m wros

iul(i  Wht!r(! *  (kmot,es t,ht-! ~)it,-pat,tcrll  (.!()~l(:tlt,(!lli~ti()ll  op(>rwtion illl(~  LS13k. d(:uot(?s t,h(!  k

least  significant bits of i. F’rom the rcsldts of S(:(:tio~l  II, we cun thlls  obs(:rw:  that th~:
f~m(hmwlltal  seqlwnce  code V 1 is e(lllivahmt  to th[! GVH1 CO(IC imd th(: Go1oII1I) (;()(1(: for
1 = 1, :LId the split-sarnpk:  codes W 1,k, arc cql~ival(!nt to th(: GVH 1 cod(: and th! Gokml~)
CO(IC fbr 1 = 2L. Hence, onc can stat c that  t hc well-know~l R.icc CO(1C can Ix: int cq nwted  M
tL special  c:we of GolomlJ’s  co(ic!,  which irl t,lum is [L slxx:ial  C:LS(! of t,hc GVH1 co(ic.

IV. E~cient Coding Based on the 2-sided Geometric Model

Chmstrlwting  an optimal prefix co(k , S+Y by llSillg  th(: HUffIIliLIl algorithm, is qllit,(-:
a complex operation in hardware. In this section we intjrodl~cc  a class” of ll(:tlr-OI)tirI”liL1
prefix codes to encode  data (e.g. diffm~!ntiids  of wilvcform (Ma and image data) with
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probability distributions that resemble the 2-sided geometric models discussed in Section
II. The construction of this prefix code is simple. For most well-behaved data, frequency(i)
= fmquency(-i)  for i = 1,2,..,. Thus in order to construct a code for both the positive
and negative values, we use the GVH 1 codes for the non-negative integers. An adclit  ional
hit, is appended to each codeword, except the codewords representing O, to hldicate  whether
integer i or integer – i is sent,  We call this code the G allager-van  Voorhis-Huffman-~  code.

Based on the above code construction, wc can evaluate the performance of the GVH2
codes and give closed form analytic expressions as a function of@ for the redundancy r2, the
IIMYLI1 codelerrgth  ~z, and the entropy H (.X2) of the 2-sided integer geometric distrjbut  ion,
where X2 is the discrete random variable corresponding to the 2-sided geometric source
[3, 4]. Hence, from Appendix 1 and 2, we write down a closed form expression for the
redundancy of our coding scheme as a function of 19 and 1, namely,

72 = [2 – H(X2)

= 1 + lklgz(l).

We find the value of 1 which
depend on 1, namely

minimises ~Z for ghwn 0 lry minimisjng  the tmrns ill TZ which

e~
./-(/) == llog2(/)J + * (~) (6)

We find the optimal 1 valuc!s  (over all ranges  of O of interest) by direct ] search, and w(?
tabldate  in Ti~l)l~  1 the ranges  of r(()) = - for which w:ll vallw of i is Optinltd, 1 <1< 3(J.
N o t e  in partic!ldar  t,h[Lt,  sOIrl(+  WL1lWS  of ~ arc  not,  US(Y] iIl Table  1, MI(1  t,lli~t tll(: riLll~(’S ar[?
difkr(!nt  from the ]-sid(!(i  cas(!  (for smiLll vtd~lcs of ~) iLS giv(m iIl [~].

v. An Adaptive Coding Scheme Based on the 2-Sided Geometric Distribution

The GVH codes described in previous sections  arc static compression schemes, id
th(? efficiency  of a code depends on lmw well the co(lc (as iL function of 1) lnatch(:s  t,h(:
source  statisti(:s  ( e .g . ,  r((l)). In pract, i(p dllc to the Illl(:(?rtj:ti]ltti(:s  assochLtfcd  wi th  the
diLt:i,  [L St,:LtiC dattL Wrl]>reSSiO1l  S(!hC!lIl(:  IrliL.y C: L1lS(+ SolllY(!-IIlo(k+l”  IlliSIrlZLt(h. Th(! SOllr(X!-

1110(1(!1  m i s m a t c h  (:WI redlwc  tll(!  cfficicn(:y  of th(! (:mrlpr(lssio{l Sdl(:IIl(+, “illl(]  111 SOIn(!  CM(W,

lIliL,y  (::111S(+  (\iLti L (+ X])ilIISiO1l. 1X1 light  of th is ,  W(! ll:Lv(! (l(w(:lO1)(:(l  tuI iL(iiLptiV(:  k) SSkXS (~iLt/L

(:omlx(!ssion  schcm(-!  t,hiLt,  (k)(!s mt, reql~h) prior knowk!d~c of th(: soluw! s t a t i s t i c s .  TIN:
only rc(lllircmcnt  is t)htltl  the soluw? statistri(”s sholdd  rescml~k!  a 2-si(lm\ g(:om(:tlric mo(h:l.
This  s(;lI(wN! 11s(!s  th(! SiLIIl(:  l)iLSi(: iL(~iL]~tiltioll  StriLt(!gy ilS t]l(: R.i(:(!  iLlgoritllIIl: 11S(’  il 1111111]  )(1’

Of (ii ff(XC;Ilt  COdeS  t“ COII1lXCSS  t,h(: (hLtiL iLIld ChooS(3° th(; h !St 011(!. TIN:  GVH-l)iLS(X[  W~i Ll)tiV(!

d;Lta comprcssiorr  method W:LS developed for the Galileo Low Gain A]lkIIIliL Mission [10]
and alt hougll is not being used M part of the flight software hasclixlc  for G alikm,  jt IrliL~

k collsidercd  for future missions,
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The adaptive lossless data compression scheme is differential-pulse-code-modulation
(DPCM) based and uses a Huffrnan  coding strategy similar to the one used to compress the
DC differentials of the JPEG [11] and ICT [10] [12] compression schemes. We developed
three Huffman  codebooks  that are based  on the ‘2-sided geometry modd : one for kJw-
activity data (1 = 1), one for medium-activity data (t=2), and onc for high-activity data
(1=4). The clata are first partitioned into blocks of fixed lengtk (e.g., 16 samplc?s per
Mock). The first sample of each block is used as a reference point and is not coded. For
the remaining samples the differences between  adjcent  samples am calculated. The encoder
then computes the number of hits that, are required to compress the block using each of
the predefine codehooks  and chooses the coclehook  that gives the lmst conqjression.  If all
code books give dat, a-expansion, the block is sent unencodcd.  Each block is preceded by a
2-bit  tag: 00 for the low-activity codebook,  01 for the ~n[!cii~l~-n-t~c:tivity  cmlebook,  10 for
the high-activity code book, and 11 for no colnpressicin.

This adaptive data compression scheme? has an cscapc! code? that prevcmts datw (~xparl-
sion. Like the Rice algorithm, this scheme is adapt,ive to local statistics (one codebook  p[!r
block) rather than depending on global statistics (one codcbook  for the whole data file).
HcIlcc,  in principle?, it can avoid the solwcc-mo(lcl mismatch problcln  hy choosing that tqdc
(from a family of codes) which performs best on the act~ml  data. The 10 SS1CSS compression
pcrformamxs  of this scheme on 19 planetary images  arc given in Figure  1. The pkmct  ary
images (of tJupiter)  were chosen hy the Galileo f~ight project team to rwflcct th[! potc!lkially
wide variety of realistic images which t hc spacecraft may encounter at, the ])kLIlet.  On

all images  exccptj  one, the adaptive lll[!thod  outperforms the global non-adaptive GVH2
nmthml  of Section IV. The single image whine it pmformcd worse wits in fact, m image

of m:arly (wnst,arlt Imckgrolmd  sky; hcuccl not sluqwisi]lgly  the a[laptivc  a])pro:lch l)il,~S :1
slight pt!rformancc  penalty ov(x t,h(! gk)lml method. For some imiq!$s (slwh as ilnagt!s 7,
8 ;~ll[i  9) tll(:  bits/symbol for tll(! diL])tiV()  Hl(:tho(] U(: iL(ItlliLllJr  lowm t]l?L1l tll(:  (Iiff(m!lltid

. This can lx? (-!xplain(!(~  by the fa(”:t,  that, the (]iff(!r’(!ntiid (!IltJY)p~entropy of tllc whok? image
is t~ glol Ml image statistic, whereas the :L(iU])tiV(!  m(:tl:()(l  is bas(!d on local stiltistics.  Thlls
the ildiL]>tiVC?  met ho(l can exploitr local variations in entropy to im~nwv(: overall coml m:ssion
l>(:rforllll~ll(~(?.

T h i s  scheme (tan IN! ~(:u(!raliztxi  to au t~~ial)tivc  (:om])im!(i rlllll(!ll~tll/Hllf  flllilll  (:()(lillg
idgorithm  fbr hkx:k  transfbrm coding  s(:h(prlcs  lik(: tJPEG,  ICT, iul(i Ha(idamarcl  trilllSfoI’111.
oth(!r th~~ll  th(! DPCM-l)iLSCXl  SCII(;II1(:S,  t,ll(: sch(:m(:  (;iL~l also b(: lw(xi :LS ;Lll (!fh(:i(mt  l)il(k-(!ll(~
(!lltlropy (x)(l(:r fbr Slll)l)iUld (w(iing.
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Appendix 1

We define the GVH2 code for the 2-sided model as described earlier, i.e., for i # O
an extra sign bit is appended to the equivalent codeword for a single-sided source. If we
define 12(i) as the length of the codeword assigned to letter i by this scheme then we must
have

12(2) =l~(i)+  1, i#O

= l~(o), i=o

Let ~2 be the mean codeword length for the GVH2 code. WC? have

i. m Z.—l

i=: 1 i.. —CO
cm

=  2~jJ2(2)ll(i)  -t- I -p2(~) -p2(~)~2(o)
i=. f.)

But by definition
p] (i)

pz(i) == ~

which leads to

[2 = *T1 + 1 – p~(o)  – p2(())t2  (o),

wh(:re 1 I is the mean co(id(mgth  of the GVH1 cmle, and is given by the following (:xpr(xsion

Since we also have in general that

/2(0) = 1 + lk)g2 (/)]

Nll(l

* We note that this result is different from that given  in G allager  and VZLI1 Voorhis’
original paper [5] - there appears to lx a typographical error in their equation for ~1,
they  have  the  te rm (logz (1)1 instead of [logz(l)j.

7



We can write

~:o(l%(w + 1 + &J) + 1- ~ - ++ + lb(w)i2=—
1+9

ok
= 1 + [log~(i)]  + *(O+ —)l–gl

Hence  we sec that the mean codelength  for the 2-sided GVH coding scheme is quite similar
in form to the l-sided GVH result. Clearly however the difference in the two forms may
k!ad to different optimal values of the paranmter  1, for fixed 0, i.e., [l and [Q may bc
minimised by different values  of 1 over certain ranges of 0.

Appendix 2

WC? seek an expression for the entropy of a 2-sided geometric source as a function of
0. We have

= (w10’w(1+2xo*) -10’’@ (2&))
= (=3(10’(+3(1++)-” ‘t%v
()1+(3

== log2 ~ –
28 log2 (0)

(1 - 6)(1 +6)



B i t s / S y m b o l



y;;,. . ‘
>

. . -—. .
.

“n Start  of Range I End of Range ] Optimal 1 1
m(0) r2(0)

1$000000 o,~96176 1
0.2961?6 0.140251 2
0.140251 0.12612ti 3
0.126126 0.077586 4

0,077586 I 0.063264 5
!

It 0.063264 I 0.055966 7 il
1

0.055966 0.041124 8
4

0.041124 0.036607 9
0.036807 I 0.033058 10

I
0.033058

1 Y
0.030397 11

0.030397 0.027749 lQ

0.027749 0.026167 15
0.026167 0.021450 16
0.021450 0.019888 17 I
0.019888 0.018849 18 i “

L 1 Y

0.015744 0.015228 23
0.015228 \ 0.014199 24
0.014199 0.013685 25 I

d

1

0.013685 0.013171 26
0.013171 0.012658 I 28 I

1 !

U 0.012658 0.012146 29 il

. .

Table ~ Optimal  lValue~for a double-sided  geometric di+ributiona  sa function ofro,
the proportion ofzero’s in the difference statistics hktogram  ‘

.


